jueves, 31 de mayo de 2012

8.3 Regulación de la transcripción en organismos eucarióticos

8.3 Regulación de la transcripción en organismos eucarióticos.



Los tipos de señales que pueden alterar la transcripción de un gen pueden ser:

Señales hormonales que interaccionan con un receptor de la membrana. En la mayoría de los casos, la señal externa provoca la aparición del segundo mensajero intracelular. La cascada de transducción de señal subsiguiente produce un regulador de transcripción específico.
En el caso de las hormonas asteroideas, el receptor está dentro de la célula y es el conjunto hormona-receptor el que actúa de regulador.


Activadores transcripcionales

Los activadores son la proteínas que se van a unir a los elementos distales (SDE y potenciadores) para activar la transcripción. Son específicos de unos pocos promotores —por lo que no estarán en todos los tipos celulares—, reconocen entre 6 y 14 pb en el promotor y suelen tener dos dominios estructurales:
  • El dominio de unión a DNA (DNA binding domain) , que consta de 60 a 100 aminoácidos consecutivos.
  • El dominio de activación de la transcripción que consta de 30 a 100 aminoácidos que no tienen por qué ser consecutivos.
  • La presencia de estos dominios las convierte en proteínas modulares en las que el dominio de unión y el de activación pueden funcionar independientemente.


.- Coactivadores y correpresores

 

 

La acción de un activador de transcripción (o de un represor) puede ejercerse directamente sobre el complejo basal (bien sobre la RNA-polimerasa, alguno de los TFII o los TAFII), o a través de una molécula intermediaria que puede ser un coactivador o un correpresor.

Se denomina coactivador si ayuda a activar la transcripción. Un mismo coactivador puede recibir señales de distintos activadores para transmitirlos hacia el complejo del promotor basal.
Se denomina correpresor si ayuda a inactivar el promotor. Los correpresores pueden tener actividad desacetilasa, con lo que hace que el DNA se una con más firmeza a los nucleosomas, inactivando el promotor porque no puede ser reconocido por los factores generales de transcripción. Entre los más conocidos podemos encontrar SMRT (correpresor del receptor de hormonas tiroideas) y N-Cor (correpresor del receptor hormonal nuclear), formados por un único péptido.

Transactivadores


Son aquellos que directamente ejercen su acción interaccionando con el complejo de iniciación formado en el promtor basal, bien sobre la propia polimerasa o, más normalmente, sobre una de las TAF o de los TFII, para activar o reprimir la transcripción, puesto que no son actividades excluyentes.


Potenciadores

 

La mayoría de los ejemplos anteriores son reguladores del tipo SDE (secuencias distales específicas). Pero la fuente de regulación más potente es al de los elementos distales: los potenciadores (enhancers o intensificadores). Su función es la de amplificar la transcripción del promotor incluso más de 1000 veces. Los hay específicos del tejido —sólo activan la transcripción de su gen en determinados tejidos—, específicos de la etapa de desarrollo e inducibles por alguna señal externa como hormonas, metales pesados, choque térmico, infección viral, etc. Necesitan la mediación de un coactivador.

Silenciamiento de genes

 

La unión inespecífica de proteínas reguladoras es un problema importante en los organismos con genomas grandes. Para combatirla, los eucariotas han hecho que los genes tengan en torno a 5 dianas para proteínas reguladoras diferentes. Esta estrategia es útil para los activadores de la transcripción porque es una estrategia eficiente y ahorra esfuerzo. Una estrategia similar no es factible con los inhibidores de la transcripción, por lo que se da poca regulación por silenciamiento.
El silenciamiento de un gen puede ocurrir por:
  • la inactivación por interacción con un regulador
  • el silenciamiento génico postranscripcional (PTGS, también denominada cosupresión o extinción génica)
  • la metilación del DNA en vertebrados (directamente ligada al superenrollamiento y al silenciamiento).

 Inactivación mediante una proteína reguladora

Se consigue uniendo una proteína reguladora a cualquiera de los distintos elementos que forman los promotores.
Los que reconocen los elementos distales
• el silenciador específico de tejido (tse): se encarga de silenciar en cualquier célula los genes que son específicos de células hepáticas
• las hormonas esteroideas comentadas anteriormente
• el gen Pit-1
Los que reconocen los elementos proximales
• la proteína CDPC: recibe el nombre de «desplazamiento de CAAT» porque impide que la caja CAAT sea reconocida por sus proteínas específicas
Los que reconocen el promotor basal
• el represor global Dr1/DRAP1: es un heterodímero que se une a TBP para evitar que interactúe con TFIIB


Silenciamiento por metilación

 

 

No todos los organismos tienen el DNA metilado. En los mamíferos, el DNA metilado forma heterocromatina a la que no pueden acceder los factores de transcripción. Por tanto, los genes metilados no se pueden transcribir ni tan siquiera residualmente. Se trata de un mecanismo muy eficiente de silenciamiento génico que, además, disminuye la cantidad de DNA que los factores de transcripción y la RNA-polimerasa tienen que rastrear para buscar los promotores.

Algo menos del 5% de las citosinas se encuentran metiladas en el genoma. De ellas, la más abundante es la 5-metil-citosina. Esta metilación aparece casi exclusivamente sobre la secuencia CG en lo que se denomina islotes CpG. Los islotes CpG son secuencias de aproximadamente 1 kpb cuya riqueza en el doblete CpG es mayor que en el resto del genoma. Los genes se expresan muy intensamente cuando sus islotes CpG están poco metilados (hipometilados), mientras que no se expresan si están hipermetilados.

Es muy frecuente que a este tipo de regulación se le denomine regulación epigenética.



BIBLIOGRAFIA
Antologia- Biologia Molecular

8.4.2 Operon de Triptofano.

8.4.2 Operon de Triptófano.



El operón triptófano es un sistema de tipo represible, ya que el aminoácido triptófano (Correpresor) impide la expresión de los genes necesarios para su propia síntesis cuando hay niveles elevados de triptófano. Sin embargo, en ausencia de triptófano o a niveles muy bajos se transcriben los genes del operón trp. Los elementos del operón trp son en esencia semejantes a los del operón lactosa:
·         Genes estructurales: existen cinco genes estructurales en el siguiente orden trpE-trpD-trpC-trpB-trpA.
·         Elementos de control: promotor (P) y operador (O). El promotor y el operador están al lado de los genes estructurales y en el siguiente orden: P O trpE-trpD-trpC-trpB-trpA. Curiosamente, las enzimas codificadas por estos cinco genes estructurales actúan en la ruta metabólica de síntesis del triptófano en el mismo orden en el que se encuentran los genes en el cromosoma.
·         Gen regulador (trpR): codifica para la proteína reguladora. Este gen se encuentra en otra región del cromosoma bacteriano aunque no muy lejos del operón.
·         Correpresor: triptófano.
En el siguiente esquema se indican los elementos del Operón Triptófano:



En ausencia de triptófano, o cuando hay muy poco, la proteína reguladora producto del gen trpR no es capaz de unirse al operador de forma que la ARN-polimerasa puede unirse a la región promotora y se transcriben los genes del operón triptófano







En presencia de triptófano, el triptófano se une a la proteína reguladora o represora cambiando su conformación, de manera que ahora si puede unirse a la región operadora y como consecuencia la ARN-polimerasa no puede unirse a la región promotora y no se transcriben los genes estructurales del operón trp.




Por tanto, la diferencia esencial entre el operón lac (inducible) y el operón trp (represible), es que en este último el represor del triptófano solamente es capaz de unirse al operador cuando previamente está unido al trp.


BIBLIOGRAFIA

8.2.1 Operon de Lactosa

8.2.1 Operon de Lactosa (Control positivo).

Un Operón es grupo de genes estructurales cuya expresión está regulada por los mismos elementos de control (promotor y operador) y genes reguladores.
Los principales elementos que constituyen un operón son los siguientes:
·         Los genes estructurales: llevan información para polipéptidos. Se trata de los genes cuya expresión está regulada. Los operones bacterianos suelen contener varios genes estructurales, son poligénicos o policistrónicos. Hay algunos operones bacterianos que tienen un solo gene estructural. Los operones eucarióticos suelen contener un sólo gen estructural siendo monocistrónicos.
·         El promotor (P): se trata de un elemento de control que es una región del ADN con una secuencia que es reconocida por la ARN polimerasa para comenzar la transcripción. Se encuentra inmediatamente antes de los genes estructurales. Abreviadamente se le designa por la letra P.
·         El operador (O): se trata de otro elemento de control que es una región del ADN con una secuencia que es reconocida por la proteína reguladora. El operador se sitúa entre la región promotora y los genes estructurales. Abreviadamente se le designa por la letra O.
·         El gen regulador (i): secuencia de ADN que codifica para la proteína reguladora que reconoce la secuencia de la región del operador. El gen regulador está cerca de los genes estructurales del operón pero no está inmediatamente al lado. Abreviadamente se le denomina gen i.
·         Proteína reguladora: proteína codificada por el gen regulador. Está proteína se une a la región del operador.
·         Inductor: sustrato o compuesto cuya presencia induce la expresión de los genes.




EL OPERÓN LACTOSA: CONTROL NEGATIVO  
 
El Operón lactosa, que abreviadamente se denomina Operón lac, es un sistema inducible que está bajo control negativo, de manera que la proteína reguladora, producto del gen regulador i, es un represor que impide la expresión de los genes estructurales en ausencia del inductor. El inductor del sistema es la lactosa. Como veremos más adelante, el operón lac también está bajo control positivo, ya que existe otra proteína que estimula la transcripción de los genes estructurales.

Los genes estructurales del operón lactosa son los siguientes:
·         El gen z+: codifica para la b-galactosidasa que cataliza la hidrolisis de la lactosa en glucosa más galactosa.
·         El gen y+: codifica para la galactósido permeasa que transporta b-galactósidos al interior de la célula bacteriana.
·         El gen a+: codifica para la tiogalactósido transacetilasa que cataliza la transferencia del grupo acetil del acetil Coenzima A al 6-OH de un aceptor tiogalatósido. Este gen no está relacionado con el metabolismo de la lactosa.

El verdadero inductor del sistema es la Alolactosa y no la lactosa de manera que la β-galactosidasa transforma la lactosa en Alolactosa. En los estudios del operón lactosa se utiliza como inductor un análogo sintético de la lactosa que es el Isopropil tiogalactósido (IPTG). El IPTG no necesita ser transportado por la galactósido permeasa para entrar en la bacteria.

Las cepas normales de E. coli son inducibles, de manera que en ausencia del inductor (la lactosa), la proteína represora producto del gen i se encuentra unida a la región operadora e impide la unión de la ARN-polimerasa a la región promotora y, como consecuencia, no se transcriben los genes estructurales.






Sin embargo, en presencia del inductor (la lactosa), este se une a la proteína reguladora que cambia su conformación y se suelta de la región operadora dejando acceso libre a la ARN-polimerasa para que se una a la región promotora y se transcriban los genes estructurales. Por consiguiente, la presencia del inductor hace que se expresen los genes estructurales del operón, necesarios para metabolizar la lactosa



BIBLIOGRAFIA

viernes, 25 de mayo de 2012

8.2 Regulación de la transcripción en organismos procarióticos.

8.2 Regulación de la transcripción en organismos procarióticos.

En procariontes, los genes para las enzimas de una misma ruta metabolica están agrupados formando operones.
RUTA METABOLICA: Serie de pasos  desde una molécula inicial a una final
Los operones permiten una expresión coordinada
Un operon esta formado por un gen regulador, un centro de control (OPERADOR MÁS PROMOTOR)  Y un  conjunto de genes estructurales
El gen regulador codifica  una proteína (REPRESOR O ACTIVADOR)  que interaccionan con el operador del centro del control para inhibir o controlar la transcripción





La expresión génica es el proceso por medio del cual todos los organismos procariotas y eucariotas transforman la información codificada en los ácidos nucleicos en las proteínas necesarias para su desarrollo y funcionamiento. En todos los organismos, inclusive los eucariotes el contenido del ADN de todas sus células es idéntico. Esto quiere decir que contienen toda la información necesaria para la síntesis de todas las proteínas. Pero no todos los genes se expresan al mismo tiempo ni en todas las células. Hay sólo un grupo de genes que se expresan en todas las células del organismo y codifican para proteínas que son esenciales para el funcionamiento general de las células y son conocidos como “housekeeping genes”. El resto de los genes se expresan o no en los diferentes tipos de células, dependiendo de la función de la célula en un tejido particular. Por ejemplo, genes que codifican proteínas responsables del transporte axonal se expresan en neuronas pero no en linfocitos en donde se expresan genes responsables de la respuesta inmune. También existe especificidad temporal, estoquiere decir que los diferentes genes en una célula se encienden o se apagan en diferentes momentos de la vida de un organismo. Además, la regulación de los genes varía según las funciones de éstos.

GEN; Toda la secuencia de  ADN necesaria  para la producción de una proteína ARN funsional (EXONES, INTRONES, ZONAS REGULADORAS, ETC)

PROMOTOR;  secuencia de ADN  que determina el sitio de inicio de la transcripccion para la ARN polimerasa

OPERADOR; Secuencia de ADN que se une a una proteína reguladora para  reprimir o activar la transcripccion  de unos genes estructurales determinados.


BIBLIOGRAFIA

8.1 Niveles de regulación de la expresión genética.

8.1 Niveles de regulación de la expresión genética.


CONTROL DE LA EXPRESIÓN GENÉTICA NIVEL DE LA TRANSCRIPCIÓN

El control de los genes regulables se realiza mediante proteínas que van a desarrollar un control activador o inhibidor sobre el mecanismo de la transcripción. Las células contienen un conjunto de proteínas que al unirse a secuencias específicas del ADN activan o desactivan los genes. Cada una de estas proteínas reguladoras de genes se encuentra en un número pequeño de copias y reconoce una secuencia de ocho a quince nucleótidos de la cadena del ADN. La unión puede facilitar
(regulación positiva) o inhibir (regulación negativa) la transcripción de un gen adyacente.
En el caso de células procariotas, la mayoría de los ARNm son policistrónicos y pueden llevar transcritos de 2 a 6 genes. Los genes regulables que codifican proteínas de una ruta metabólica concreta no se encuentran dispersos en el genoma, sino que están normalmente adyacentes, agrupados en unidades de funcionamiento u operación denominadas operones, y su transcripción está bajo el control de proteínas activadoras y represoras. La región del ADN donde se unen estas proteínas recibe el nombre de operador y está muy próxima, si no solapada, con la región del promotor.


1)  CONFORMACION Y ESTRUCTURA   DEL ADN

Compactación diferencial de la cromatina

La compactación de la cromatina afecta la capacidad de unión de las enzimas y factores transcripcionales de genes específicos. La cromatina se puede dividir en dos clases según su patrón de tinción. La eucromatina se tiñe suavemente y se corresponde con regiones  del genoma que están disponibles  para la transcripción. Por otro lado,  la heterocromatina, se tiñe intensamente  y se corresponde a regiones del genoma que  están densamente compactadas e inaccesibles para el aparato transcripcional.
Se pueden distinguir dos clases de heterocromatina: la constitutiva y la facultativa. La constitutiva hace referencia a cromosomas o parte de ellos que son heterocromáticos en todas las células de una misma especie, mientras que la facultativa implica zonas de cromosomas que se pueden descompactar tornándose en  eucromatina  en algunas células de un mismo organismo.
Como la heterocromatina no puede ser transcripta, la expresión génica en los eucariontes se puede reprimir  por condensación de eucromatina en heterocromatina. Todavía no se conocen todos los factores que  modulan la descompactación de la cromatina. Ciertamente hay proteínas que reconocen secuencias específicas del DNA y una vez unidas, transmiten la señal  de descondensación de  cerca de 10000 pares de bases correspondientes a un bucle de la cromatina.

Las acetilaciones y desacetilaciones de histonas son modificaciones covalentes frecuentes en estos fenómenos de descompactación cromatínica. Un ejemplo típico de este tipo de regulación ocurre  en  la acetilación de coactivadores involucrados en las transcripciones genéticas moduladas por las hormonas tiroideas. Las acetilaciones se producen en los residuos de lisina de los extremos
aminoterminales de las histonas, reduciendo su carga positiva y por lo tanto su afinidad de unión al ADN cargado negativamente. La desacetilación de las histonas, mediada por desacetilasas provoca el efecto contrario (recompactación).

Secuencias características de organización del DNA como los  palíndromes así como la disposición espacial del  DNA Z han sido relacionados con señalizaciones para el sitio de inicio de la transcripción.

 Modificaciones covalentes del ADN


              Metilaciones de  residuos de desoxi citidina:

La metilación de los restos de citosina en el ADN, especialmente en los sitios promotores, dificultan la transcripción. Por ejemplo: los genes de globina están más metilados en células no productoras de hemoglobina que en los eritroblastos. Las metilaciones se producen  en  secuencias específicamente reconocidas ( 5’--- m CpG ---3’) que generalmente se agrupan en “islotes” ricos en GC, con frecuencia  dentro o cerca  de regiones reguladoras de la transcripción.
La metilación puede inhibir la transcripción de los genes al interferir  en la capacidad de los factores de transcripción  para reconocer los sitios de unión al ADN  o alterando las conformaciones del ADN  dificultando la polimerización de la ARN polimerasa. Uno de los ejemplos más espectaculares de la metilación  ocurre durante el fenómeno de impresión genómica. Así, el conjunto de cromosomas heredados del progenitor masculino no es funcionalmente equivalente al conjunto de cromosomas heredados  de la madre.Existen por lo menos 100 genes sometidos a esta expresión diferencial. Las versiones activas e inactivas de los genes difieren en sus patrones de metilación. Las diferencias en los alelos se originan durante la gametogénesis.

              Modificación del número y de la estructura de los genes:

La eliminación total o parcial  de genes impide la formación de ARNm y de la proteína correspondiente, los glóbulos rojos son un caso extremo donde una vez sintetizadas las proteínas estructurales y funcionales, la eliminación del núcleo en la etapa de eritroblasto ortocromático produce una célula incapaz de sintetizar toda otra proteína de novo presentando un 90% del contenido proteico total como hemoglobina.

Otro caso es la recombinación somática de la línea  germinal de los linfocitos B. En este tipo particular de regulación de la expresión de genética,  los genes codificantes de las cadenas pesadas y livianas de la inmunoglobulinas sufren un rearreglo independiente de la presencia del antígeno. Allí, se produce el corte y empalme al azar de diversos fragmentos génicos de manera irreversible que dan origen al variado repertorio de las inmunoglobulinas.

Por otra parte, la presencia de genes en tandem, implica la presencia de  de múltiples copias de un gen que aumentan la capacidad de producción de la proteína requerida en grandes cantidades. Es el caso de los  genes codificantes de histonas y ARN 5S.

La regulación génica se puede regular también en función de la disponibilidad del DNA incrementando el número de copias de un gen  accesible. Este mecanismo de regulación se conoce como amplificación génica. Una forma de amplificación es la repetición sucesiva de la replicación de una secuencia específica del ADN. Este fenómeno se observó en la amplificación de ciertos genes cuyos productos son necesarios  para el desarrollo de algunos insectos y anfibios. Como ejemplo puede citarse  el ARN ribosómico en la rana Xenopus laevis, donde los gnes que codifican los ARN r 5.8 S, 18S y 28 S se amplifican de 500 a 2 millones de copias.


2) CONTROL TRANSCRIPCIONAL DE LA EXPRESION GENETICA

Constituye uno de los modos más importantes de regulación de la expresión proteica en eucariontes. En esta categoría están incluídos los promotores, la presencia de secuencias regulatorias potenciadoras (enhancers), y la interacción entre múltiples proteínas activadoras o inhibidoras que actúan mediante su unión a secuencias específicas de reconocimiento al ADN.
Las regulaciones pueden ser de tipo CIS o TRANS.
 Cuando el elemento regulador transcripcional es parte de la cadena polinucleotídica donde se localiza el gen a regular, se denomina regulador CIS. Evidentemente se tratan de secuencias especiales del ADN  (promotores y enhancers).
Cuando los elementos regulatorios son de naturaleza y origen  diferente a la secuencia genética a controlar, la regulación es de tipo TRANS (aquí se incluyen a los factores de transcripción generales,  histoespecíficos y  todas las proteínas regulatorias con capacidad de unión al ADN).

Regulación en CIS

              Promotores

El paso inicial de la síntesis de los tres tipos de ARN es la ubicación  de las ARN polimerasas junto a una secuencia del ADN a la altura del denominado promotor del gen a ser transcripto. La ARN polimerasa I sintetiza los ARN r (excepto el 5S), la de tipo II sintetiza los ARN m y algunos ARN sn involucrados en el proceso de corte y empalme del transcripto primario (splicing), mientras que la ARN polimerasa III  sintetiza el ARN r 5S y los ARN t.El más complejo de los procesos regulatorios es el que comprende a los genes de clase II o codificantes de ARN m. Casi todos los genes codificantes de proteínas contienen  promotores basales de dos tipos  y un número variable de dominios regulatorios transcripcionales.
El promotor es una secuencia  que define el sitio de iniciación de  la transcripción del ARN.
Los promotores más frecuentes son los de tipo CCAAT  y TATA , denominados motivos o cajas por su alta conservación evolutiva.
La caja TATA está localizada 20-30 pb corriente arriba del sitio de inicio de la transcripción . Numerosas proteínas identificadas como TF IIA,B,C, etc.  (factores regulatorios de la ARN polimerasa II) interaccionan con la caja TATA. El promotor CCAAT reside 50-130 pb corriente arriba del sitio de inicio transcripcional. La proteína denominada C/EBP (CCAAT-box /enhancer/binding/protein) se une a esta secuencia. Otra secuencia regulatoria incluye a la caja GC.
Si bien los promotores están preferentemente localizados corriente arriba (5’) del inicio transcripcional, algunos pueden ubicarse corriente abajo (3’) o bien ser de tipo intragénicos. El número y tipo de eleemntos regulatorios varían según cada ARNm. La naturaleza de los promotores y la combinatoria de las proteínas interactuantes con ellos  es uno de los principales mecanismos de regulación en los genes de tipo inducibles.

              Secuencias regulatorias   potenciadoras  (enhancers):


Existen además secuencias del ADN que pueden localizarse corriente arriba o abajo del gen a regular situadas a miles de pares de bases con respecto al promotor. Las zonas de ADN sobre las cuales se ejercen   acciones activadoras son llamadas potenciadoras o aumentadoras (enhancers en inglés). En términos generales una secuencia regulatoria potenciadora o enhancer regula la frecuencia con la que se realiza el proceso transcripcional.

Para un mismo gen pueden existir varias secuencias regulatorias. También existen  reguladores de acción opuesta (silenciadores o amortiguadores de la transcripción). La explicación más simple del fenómeno regulatorio a distancia es  propone que la molécula de ADN  se dobla en asa para permitir  la aproximación de estas zonas alejadas de la doble hélice y ubica a la proteína activadora unida al “enhancer".





BIBLIOGRAFIA

PORTADA



          SEP                          SNEST                    DGEST
 

“INSTITUTO TECNOLÓGICO
DE CIUDAD ALTAMIRANO”




PRESENTA: FRANCISCO GALINDEZ DE PAZ


UNIDAD “8”

REGULACIÓN DE LA EXPRESIÓN GENÉTICA


No DE CONTROL: 09930037


CARRERA: LIC. EN BIOLOGIA

VI SEMESTRE


Ciudad Altamirano gro. México a 25 de mayo del 2012





INTRODUCCIÓN

Como ya hemos visto anteriormente tanto en clase como atravez del internet y demás, La transmisión de la información genética (transcripción), posibilita la formación de proteínas, cuyas funciones van a caracterizar la actividad y morfología de las células; pero la regulación de los tipos y cantidades de proteínas presentes en cada momento constituye un tema de tanta relevancia como el propio hecho de la síntesis. Las células son estructuras muy organizadas cuyas moléculas se ordenan de forma rigurosa.

En un organismo no se necesitan todos los productos génicos de forma salteada podría decirse, ni a los mismos niveles, con lo cual el sistema de regulación va a servir para ajustar el uso del depósito de información de los ácidos nucleicos a los requerimientos de cada célula o de cada organismo.
A la regulación de la síntesis de las macromoléculas se la denomina regulación de la expresión genética o génica.
En un organismo procariota, muy dependiente de las condiciones de su entorno, la regulación debe permitirle responder rápidamente a las modificaciones medioambientales con el objeto de garantizar su supervivencia. La utilización de una parte u otra de su dotación genética le facilitará adaptarse adecuadamente a su entorno. En una célula de Escherichia coli se pueden medir niveles diferentes de concentraciones proteicas; hay proteínas muy escasas, que se encuentran en número de una decena; y hay proteínas muy abundantes, de las que pueden medirse miles de copias. En una célula de mamífero pueden existir 1010 moléculas de proteínas pertenecientes a unos 10.000 a 20.000 tipos diferentes. Esta enorme variación entre el número y tipo de moléculas presentes es posible por los cambios controlados en la producción y en la degradación de los productos génicos.

Dentro de  de la regulación  existen una serie de genes que se espresan constantemente,  denominándoseles genes constitutivos, y como producto son células necesarias de forma continua en todos momentos de su existencia.

Por otro lado existen genes denominados regulables, esta  expresión estará ajustada por las necesidades que tiene las células del organismo ya sea aumentando su expresión  génica o disminuyendo.


OBJETIVOS

Integrar los conocimientos anteriores con los mecanismos de regulación genética para entender a nivel molecular los procesos metabólicos


METODOLOGÍA

La metodología que en esta unidad utilizare será: al final de la unidad subiré la unidad completa, una vez terminada y una vez que se halla hecho el examen para que en el blog este bien ordenada, para que por si alguna casualidad el maestro llegara a dejar tarea no quede a la mitad o entre medio de la unida, asi que sea al final.